Terms and Conditions of Use:

All of the information, data and computer software ("information") presented on this web site is for general information only. While every effort will be made to insure its accuracy, this information should not be used or relied on for any specific application without independent, competent professional examination and verification of its accuracy, suitability and applicability by a licensed professional. Anyone making use of this information does so at his or her own risk and assumes any and all liability resulting from such use. The entire risk as to quality or usability of the information contained within is with the reader. In no event will this web page or webmaster be held liable, nor does this web page or its webmaster provide insurance against liability, for any damages including lost profits, lost savings or any other incidental or consequential damages arising from the use or inability to use the information contained within.

This site is not an official site of Prentice-Hall, Pile Buck, or Vulcan Foundation Equipment. All references to sources of software, equipment, parts, service or repairs do not constitute an endorsement.
We Shall Achieve

Forward and Inverse Solution of the Wave Equation for Piling Using Axisymmetric Finite Elements

Don C. Warrington
Objective

• Develop an improved method for the static and dynamic analysis of driven piles for both forward and inverse solutions

 • Forward methods: the hammer is modeled and the pile response and capacity for a certain blow count is estimated

 • Inverse methods: the force-time and velocity- or displacement-time history from driving data is used to estimate the pile capacity
Driven Piles

• Oldest type of deep foundation in use
• Still common in many structures, especially for transportation applications
Wave Propagation in Piles

\[\frac{\partial^2}{\partial t^2} u(x, t) = c_a^2 \frac{\partial^2}{\partial x^2} u(x, t) \]

- First became an issue with concrete piles
- First identified and studied in 1930's
- Smith (1960) developed the first viable numerical analysis of wave propagation in piles
Inverse Methods for Piles

- Geotechnical uncertainties made use of driving results important
- Dynamic formulae, based on rigid body Newtonian impact mechanics, were popular but inadequate to the task of predicting SRD (soil resistance to driving)
- First research on topic was in late 1950's, but Rausche (1970) developed the first viable technique to use wave propagation theory to predict SRD from field data
- Developed methods such as the Case Method and CAPWAP
CAPWAP and Pile Driving Analyzer

1. Measure F_m, a_m
2. Compute $F_c = F_d(a_m, R_s, R_l)$
3. Compare $F_m \sim F_c$
4. Correct R_s, R_l
5. Iterate (go to 2)
We Shall Achieve

Weaknesses of Current State of the Art

- Limitations of one-dimensional Smith visco-elastic-plastic model
- Lack of clear relationship between basic soil properties and properties used in wave equation analysis
- Uniqueness issues regarding soil model with first and second time derivatives
- Uncertainties in relationship between pile axial capacity and SRD
Elements of Proposed Solution: Program STADYN

- Two/Three-Dimensional Axisymmetric Analysis of Hammer, Pile and Soil System
- Mohr-Coulomb Elasto-Perfectly Plastic Solution
- Galerkin Finite Element Solution, Static and Dynamic Problems with Same Model
- Aggregation of Soil Properties for Simplified Input and Inverse Solution
- Polytope Optimization Technique for Determination of SRD From Field Data
Two/Three-Dimensional Axisymmetric Analysis of Hammer, Pile and Soil System
Two/Three-Dimensional Axisymmetric Analysis of Hammer, Pile and Soil System
Mohr-Coulomb Elasto-Perfectly Plastic Solution
Galerkin Finite Element Solution

Corner Nodes: \(\frac{1}{4} (1 - \xi_i)(1 - \eta_i) \), \(i = 1, 2, 3, 4 \)
Aggregation of Soil Properties for Simplified Input and Inverse Solution

- Modulus of Elasticity E
- Poisson’s Ratio ν
- Dry Density of Soil ρ
- Cohesion c
- Yield Strength of Soil σ_{yield}. This is in reality $\sigma_{\text{yield}} = q_c = 2c$ (67)
- Internal Friction Angle of Soil ϕ
- Dilitancy Angle of Soil ψ. This was discussed earlier; it is either set to zero or is a function of ϕ.
- Acoustic Speed of Soil or Other Material c_a, which is determined by $c_a = \sqrt{\frac{E}{\rho}}$ (68)
- Specific Gravity of the soil particles, G_s.

(Density or Consistency)

η

ξ (Degree of Cohesion)
Polytope Optimization Technique for Determination of SRD From Field Data
Test Cases

- Fixed Base Study
- Dilitancy and Element Squeeze
- Static Load Test Interpretation
- Modeled Hammer Runs, Cushioned and Cushionless
- Bearing Graph Study
- Comparison with Actual Static Load Test and Driving Record
- Comparison with GRLWEAP
- Inverse Study Comparison with CAPWAP
Inverse Study Using Optimization Technique

- Job Site: Test Pile in Kenner, Louisiana
- Composite Pile: 172 mm O.D. Steel Pipe Pile, 13.72 meters long, with 305 mm 10.67 m long timber “stinger”
- Hammer: Vulcan SC-9
- Driving into soft to medium fat clays, saturated virtually to soil surface
- Cases for 1, 2, 4, 8 and full (24) soil layers
Pile Head Test Data Input
FEA Model, Static and Dynamic
Displacement-Time Results
Stress-Time Results
Optimization Track (Annealed)
Velocity Time Track (Four Layer Annealed Case)
Soil Aggregate Properties Result (Four-Layer)
SRD Comparison

![Graph showing the comparison between Standard Polytope and Annealed Polytope for different numbers of shaft layers, with decreasing load capacity as the number of layers increases.](image)
Conclusions

- Basic validity of the model was established
- Addition of “convenience features” (layering, etc.) was very helpful
- Aggregation technique was helpful with inverse method but needs further calibration with actual soil properties
- Other specific issues to driven piles need to be resolved